My AI-powered workflow for getting smart fast on a new topic

06-18-2025

LinkedIN Post on AI Flow

๐Ÿง  ๐—š๐—ฒ๐˜๐˜๐—ถ๐—ป๐—ด ๐˜€๐—บ๐—ฎ๐—ฟ๐˜ ๐—ณ๐—ฎ๐˜€๐˜ ๐—ผ๐—ป ๐—ฎ ๐—ป๐—ฒ๐˜„ ๐˜๐—ผ๐—ฝ๐—ถ๐—ฐ ๐—ต๐—ฎ๐˜€ ๐—ป๐—ฒ๐˜ƒ๐—ฒ๐—ฟ ๐—ฏ๐—ฒ๐—ฒ๐—ป ๐—ฒ๐—ฎ๐˜€๐—ถ๐—ฒ๐—ฟ.

When you need to get up to speed quickly and it really matters, a standard ChatGPT search won't cut it. Sometimes the complexity of the subject matter, industry and factors at play demands something more robust.

Hereโ€™s the workflow I use for quickly getting up to speed fast without sacrificing depth.

๐— ๐˜† ๐Ÿฑ-๐—ฆ๐˜๐—ฒ๐—ฝ ๐—ฅ๐—ฎ๐—ฝ๐—ถ๐—ฑ ๐——๐—ฒ๐—ฒ๐—ฝ ๐——๐—ถ๐˜ƒ๐—ฒ ๐—ช๐—ผ๐—ฟ๐—ธ๐—ณ๐—น๐—ผ๐˜„:

1๏ธโƒฃ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐˜„๐—ถ๐˜๐—ต ๐—ฎ ๐—ด๐—ฟ๐—ฒ๐—ฎ๐˜ ๐—ฝ๐—ฟ๐—ผ๐—บ๐—ฝ๐˜ I use a custom Claude Project trained on the prompting documentation from OpenAI, Google, and Anthropic to create well-crafted research prompts. ๐˜๐˜ง ๐˜บ๐˜ฐ๐˜ถ ๐˜ฑ๐˜ณ๐˜ฆ๐˜ง๐˜ฆ๐˜ณ ๐˜–๐˜ฑ๐˜ฆ๐˜ฏ๐˜ˆ๐˜, ๐˜บ๐˜ฐ๐˜ถ ๐˜ค๐˜ข๐˜ฏ ๐˜ข๐˜ญ๐˜ด๐˜ฐ ๐˜ถ๐˜ด๐˜ฆ ๐˜ข ๐˜Š๐˜ถ๐˜ด๐˜ต๐˜ฐ๐˜ฎ ๐˜Ž๐˜—๐˜› ๐˜ง๐˜ฐ๐˜ณ ๐˜ต๐˜ฉ๐˜ช๐˜ด.

2๏ธโƒฃ ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜† ๐——๐—ฒ๐—ฒ๐—ฝ ๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—ฎ๐—ฐ๐—ฟ๐—ผ๐˜€๐˜€ ๐Ÿฑ ๐—”๐—œ ๐˜๐—ผ๐—ผ๐—น๐˜€ ๐˜€๐—ถ๐—บ๐˜‚๐—น๐˜๐—ฎ๐—ป๐—ฒ๐—ผ๐˜‚๐˜€๐—น๐˜† I then use that prompt with five Deep Research tools โ€” Perplexity, ChatGPT, Claude, Gemini, and Grok. Each one approaches research and output differently, giving a broader perspective. ๐˜๐˜ง ๐˜บ๐˜ฐ๐˜ถ ๐˜ธ๐˜ข๐˜ฏ๐˜ต ๐˜ต๐˜ฐ ๐˜ซ๐˜ถ๐˜ด๐˜ต ๐˜ฑ๐˜ช๐˜ค๐˜ฌ ๐˜ฐ๐˜ฏ๐˜ฆ, ๐˜Š๐˜ฉ๐˜ข๐˜ต๐˜Ž๐˜—๐˜›'๐˜ด ๐˜‹๐˜ฆ๐˜ฆ๐˜ฑ ๐˜™๐˜ฆ๐˜ด๐˜ฆ๐˜ข๐˜ณ๐˜ค๐˜ฉ ๐˜ช๐˜ด ๐˜ด๐˜ญ๐˜ช๐˜จ๐˜ฉ๐˜ต๐˜ญ๐˜บ ๐˜ฃ๐˜ฆ๐˜ต๐˜ต๐˜ฆ๐˜ณ ๐˜ณ๐˜ช๐˜จ๐˜ฉ๐˜ต ๐˜ฏ๐˜ฐ๐˜ธ ๐˜ฃ๐˜ถ๐˜ต ๐˜ต๐˜ฉ๐˜ฆ๐˜บ'๐˜ณ๐˜ฆ ๐˜ข๐˜ญ๐˜ญ ๐˜ฆ๐˜น๐˜ค๐˜ฆ๐˜ญ๐˜ญ๐˜ฆ๐˜ฏ๐˜ต.

3๏ธโƒฃ ๐—ฃ๐—ฒ๐—ฟ๐˜€๐—ผ๐—ป๐—ฎ๐—น๐—น๐˜† ๐—ฒ๐˜…๐˜๐—ฟ๐—ฎ๐—ฐ๐˜ ๐—ฎ๐—ป๐—ฑ ๐—ผ๐—ฟ๐—ด๐—ฎ๐—ป๐—ถ๐˜‡๐—ฒ I scan the reports and copy the most compelling bits into my personal note-taking app so I can reference them later.

4๏ธโƒฃ ๐—–๐—ฒ๐—ป๐˜๐—ฟ๐—ฎ๐—น๐—ถ๐˜‡๐—ฒ ๐—ถ๐—ป ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—ก๐—ผ๐˜๐—ฒ๐—ฏ๐—ผ๐—ผ๐—ธ๐—Ÿ๐—  I export those research reports as PDFs and import them into NotebookLM along with any relevant URLs. This is my research hub. NotebookLM allows me to "chat" with the documents, returning footnoted and referenced answers. It can also generate a well-organized summary of all the research reports.

But here's where it gets interesting...

5๏ธโƒฃ ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ฒ ๐—ฎ ๐—ฟ๐—ฒ๐—ฎ๐—น๐—ถ๐˜€๐˜๐—ถ๐—ฐ ๐—ฃ๐—ผ๐—ฑ๐—ฐ๐—ฎ๐˜€๐˜ ๐ŸŽง I use NotebookLM to generate a realistic audio podcast from the material: two hosts discussing the research, sounding remarkably like a professional show. They debate points and explore nuances just like real hosts. It's amazing.

๐Ÿ’ก The podcast element is what really blows me away, even months after release. Itโ€™s the perfect complement to reading the material. Plus, I can keep learning while driving around town, significantly expanding my window to absorb new information.